.. include:: /project-links.txt .. include:: /abbreviation.txt .. getthecode:: three-phase.py :language: python3 :hidden: ================================================= Three-phased Current: Y and Delta configurations ================================================= This examples shows the computation of the voltage for the Y and Delta configurations. .. code-block:: py3 import math import numpy as np import matplotlib.pyplot as plt from PySpice.Unit import * Let use an European 230 V / 50 Hz electric network. .. code-block:: py3 frequency = 50@u_Hz w = frequency.pulsation period = frequency.period rms_mono = 230 amplitude_mono = rms_mono * math.sqrt(2) The phase voltages in Y configuration are dephased of :math:`\frac{2\pi}{3}`: .. math:: V_{L1 - N} = V_{pp} \cos \left( \omega t \right) \\ V_{L2 - N} = V_{pp} \cos \left( \omega t - \frac{2\pi}{3} \right) \\ V_{L3 - N} = V_{pp} \cos \left( \omega t - \frac{4\pi}{3} \right) We rewrite them in complex notation: .. math:: V_{L1 - N} = V_{pp} e^{j\omega t} \\ V_{L2 - N} = V_{pp} e^{j \left(\omega t - \frac{2\pi}{3} \right) } \\ V_{L3 - N} = V_{pp} e^{j \left(\omega t - \frac{4\pi}{3} \right) } .. code-block:: py3 t = np.linspace(0, 3*float(period), 1000) L1 = amplitude_mono * np.cos(t*w) L2 = amplitude_mono * np.cos(t*w - 2*math.pi/3) L3 = amplitude_mono * np.cos(t*w - 4*math.pi/3) From these expressions, we compute the voltage in delta configuration using trigonometric identities : .. math:: V_{L1 - L2} = V_{L1} \sqrt{3} e^{j \frac{\pi}{6} } \\ V_{L2 - L3} = V_{L2} \sqrt{3} e^{j \frac{\pi}{6} } \\ V_{L3 - L1} = V_{L3} \sqrt{3} e^{j \frac{\pi}{6} } In comparison to the Y configuration, the voltages in delta configuration are magnified by a factor :math:`\sqrt{3}` and dephased of :math:`\frac{\pi}{6}`. Finally we rewrite them in temporal notation: .. math:: V_{L1 - L2} = V_{pp} \sqrt{3} \cos \left( \omega t + \frac{\pi}{6} \right) \\ V_{L2 - L3} = V_{pp} \sqrt{3} \cos \left( \omega t - \frac{\pi}{2} \right) \\ V_{L3 - L1} = V_{pp} \sqrt{3} \cos \left( \omega t - \frac{7\pi}{6} \right) .. code-block:: py3 rms_tri = math.sqrt(3) * rms_mono amplitude_tri = rms_tri * math.sqrt(2) L12 = amplitude_tri * np.cos(t*w + math.pi/6) L23 = amplitude_tri * np.cos(t*w - math.pi/2) L31 = amplitude_tri * np.cos(t*w - 7*math.pi/6) Now we plot the waveforms: .. code-block:: py3 figure = plt.figure(1, (20, 10)) plt.plot(t, L1, t, L2, t, L3, t, L12, t, L23, t, L31, # t, L1-L2, t, L2-L3, t, L3-L1, ) plt.grid() plt.title('Three-phase electric power: Y and Delta configurations (230V Mono/400V Tri 50Hz Europe)') plt.legend(('L1-N', 'L2-N', 'L3-N', 'L1-L2', 'L2-L3', 'L3-L1'), loc=(.7,.5)) plt.xlabel('t [s]') plt.ylabel('[V]') plt.axhline(y=rms_mono, color='blue') plt.axhline(y=-rms_mono, color='blue') plt.axhline(y=rms_tri, color='blue') plt.axhline(y=-rms_tri, color='blue') plt.show() .. image:: three-phase.png :align: center