####################################################################################################
#r#
#r# =============
#r# Transformer
#r# =============
#r#
#r# This examples shows how to simulate a transformer.
#r#
####################################################################################################
import matplotlib.pyplot as plt
####################################################################################################
import PySpice.Logging.Logging as Logging
logger = Logging.setup_logging()
####################################################################################################
from PySpice.Probe.Plot import plot
from PySpice.Spice.Netlist import Circuit
from PySpice.Unit import *
####################################################################################################
from Transformer import Transformer
#f# literal_include('Transformer.py')
####################################################################################################
circuit = Circuit('Transformer')
ac_line = circuit.AcLine('input', 'input', circuit.gnd, rms_voltage=230@u_V, frequency=50@u_Hz)
circuit.subcircuit(Transformer(turn_ratio=10))
circuit.X('transformer', 'Transformer', 'input', circuit.gnd, 'output', circuit.gnd)
circuit.R('load', 'output', circuit.gnd, 1@u_kΩ)
simulator = circuit.simulator(temperature=25, nominal_temperature=25)
analysis = simulator.transient(step_time=ac_line.period/200, end_time=ac_line.period*3)
figure, ax = plt.subplots(figsize=(20, 10))
ax.plot(analysis.input)
ax.plot(analysis.output)
ax.legend(('Vin [V]', 'Vout [V]'), loc=(.8,.8))
ax.grid()
ax.set_xlabel('t [s]')
ax.set_ylabel('[V]')
plt.tight_layout()
plt.show()
#f# save_figure('figure', 'transformer.png')
8.19.2. Transformer¶
This examples shows how to simulate a transformer.
import matplotlib.pyplot as plt
import PySpice.Logging.Logging as Logging
logger = Logging.setup_logging()
from PySpice.Probe.Plot import plot
from PySpice.Spice.Netlist import Circuit
from PySpice.Unit import *
from Transformer import Transformer
####################################################################################################
from PySpice.Spice.Netlist import SubCircuitFactory
from PySpice.Unit import *
####################################################################################################
class Transformer(SubCircuitFactory):
NAME = 'Transformer'
NODES = ('input_plus', 'input_minus',
'output_plus', 'output_minus')
##############################################
def __init__(self,
turn_ratio,
primary_inductance=1@u_H,
copper_resistance=1@u_Ω,
leakage_inductance=1@u_mH,
winding_capacitance=20@u_pF,
coupling=.999,
):
super().__init__()
# For an ideal transformer you can reduce the values for the flux leakage inductances, the
# copper resistors and the winding capacitances. But
if copper_resistance <= 0:
raise ValueError("copper resistance must be > 0")
if leakage_inductance <= 0:
raise ValueError("leakage inductance must be > 0")
# primary_turns =
# secondary_turns =
# turn_ratio = primary_turns / secondary_turns
# primary_inductance =
# primary_inductance / secondary_inductance = turn_ratio**2
secondary_inductance = primary_inductance / float(turn_ratio**2)
# Primary
self.C('primary', 'input_plus', 'input_minus', winding_capacitance)
self.L('primary_leakage', 'input_plus', 1, leakage_inductance)
primary_inductor = self.L('primary', 1, 2, primary_inductance)
self.R('primary', 2, 'output_minus', copper_resistance)
# Secondary
self.C('secondary', 'output_plus', 'output_minus', winding_capacitance)
self.L('secondary_leakage', 'output_plus', 3, leakage_inductance)
secondary_inductor = self.L('secondary', 3, 4, secondary_inductance)
self.R('secondary', 4, 'output_minus', copper_resistance)
# Coupling
self.CoupledInductor('coupling', primary_inductor.name, secondary_inductor.name, coupling)
circuit = Circuit('Transformer')
ac_line = circuit.AcLine('input', 'input', circuit.gnd, rms_voltage=230@u_V, frequency=50@u_Hz)
circuit.subcircuit(Transformer(turn_ratio=10))
circuit.X('transformer', 'Transformer', 'input', circuit.gnd, 'output', circuit.gnd)
circuit.R('load', 'output', circuit.gnd, 1@u_kΩ)
simulator = circuit.simulator(temperature=25, nominal_temperature=25)
analysis = simulator.transient(step_time=ac_line.period/200, end_time=ac_line.period*3)
figure, ax = plt.subplots(figsize=(20, 10))
ax.plot(analysis.input)
ax.plot(analysis.output)
ax.legend(('Vin [V]', 'Vout [V]'), loc=(.8,.8))
ax.grid()
ax.set_xlabel('t [s]')
ax.set_ylabel('[V]')
plt.tight_layout()
plt.show()