11.1.10.10. Simulation

This modules implements classes to perform simulations.

class PySpice.Spice.Simulation.ACAnalysisParameters(variation, number_of_points, start_frequency, stop_frequency)[source]

Bases: PySpice.Spice.Simulation.AnalysisParameters

This class defines analysis parameters for AC analysis.

class PySpice.Spice.Simulation.AcSensitivityAnalysisParameters(output_variable, variation, number_of_points, start_frequency, stop_frequency)[source]

Bases: PySpice.Spice.Simulation.AnalysisParameters

This class defines analysis parameters for AC sensitivity analysis.

class PySpice.Spice.Simulation.AnalysisParameters[source]

Bases: object

Base class for analysis parameters

class PySpice.Spice.Simulation.CircuitSimulation(circuit, **kwargs)[source]

Bases: object

Define and generate the spice instruction to perform a circuit simulation.

Warning

In some cases NgSpice can perform several analyses one after the other. This case is partially supported.

ac(variation, number_of_points, start_frequency, stop_frequency)[source]

Perform a small-signal AC analysis of the circuit where all non-linear devices are linearized around their actual DC operating point.

Examples of usage:

analysis = simulator.ac(start_frequency=10@u_kHz, stop_frequency=1@u_GHz, number_of_points=10,  variation='dec')

Note that in order for this analysis to be meaningful, at least one independent source must have been specified with an AC value. Typically it does not make much sense to specify more than one AC source. If you do, the result will be a superposition of all sources, thus difficult to interpret.

Spice examples:

.ac dec nd fstart fstop
.ac oct no fstart fstop
.ac lin np fstart fstop

The parameter variation must be either dec, oct or lin.

ac_sensitivity(output_variable, variation, number_of_points, start_frequency, stop_frequency)[source]

Compute the sensitivity of the AC values of a node voltage or voltage-source branch current to all non-zero device parameters.

Examples of usage:

analysis = simulator.ac_sensitivity(...)

Spice syntax:

.sens outvar ac dec nd fstart fstop
.sens outvar ac oct no fstart fstop
.sens outvar ac lin np fstart fstop

Spice examples:

.sens V(OUT) AC DEC 10 100 100 k
dc(**kwargs)[source]

Compute the DC transfer fonction of the circuit with capacitors open and inductors shorted.

Examples of usage:

analysis = simulator.dc(Vinput=slice(-2, 5, .01))
analysis = simulator.dc(Ibase=slice(0, 100e-6, 10e-6))
analysis = simulator.dc(Vcollector=slice(0, 5, .1), Ibase=slice(micro(10), micro(100), micro(10))) # broken ???

Spice syntax:

.dc src_name vstart vstop vincr [ src2 start2 stop2 incr2 ]

src_name is the name of an independent voltage or a current source, a resistor or the circuit temperature.

vstart, vstop, and vincr are the starting, final, and incrementing values respectively.

A second source (src2) may optionally be specified with associated sweep parameters. In this case, the first source is swept over its range for each value of the second source.

Spice examples:

.dc VIN 0 .2 5 5.0 0.25
.dc VDS 0 10 .5 VGS 0 5 1
.dc VCE 0 10 .2 5 IB 0 10U 1U
.dc RLoad 1k 2k 100
.dc TEMP -15 75 5
dc_sensitivity(output_variable)[source]

Compute the sensitivity of the DC operating point of a node voltage or voltage-source branch current to all non-zero device parameters.

Examples of usage:

analysis = simulator.dc_sensitivity('v(out)')

Spice syntax:

.sens outvar

Examples:

.sens V(1, OUT)
.sens I(VTEST)
distortion(variation, points, start_frequency, stop_frequency, f2overf1=None)[source]

Perform a distortion analysis of the circuit.

variation, points, start_frequency, stop_frequency - typical ac range parameters. if f2overf1 is specified, perform a spectral analysis, else perform a harmonic analysis.

See section 15.3.3 of ngspice manual.

  • harmonic analysis, The distof1 parameter of the AC input to the circuit must be specified. Second harmonic magnitude and phase are calculated at each circuit node.

  • Spectral analysis,

    The distof2 parameter of the AC input to the circuit must be specified as well as distof1. See the ngspice manual.

Spice syntax:

General form:

.disto dec nd fstart fstop <f2overf1 >
.disto oct no fstart fstop <f2overf1 >
.disto lin np fstart fstop <f2overf1 >

Examples:

.disto dec 10 1kHz 100 MEG
.disto dec 10 1kHz 100 MEG 0.9
initial_condition(**kwargs)[source]

Set initial condition for voltage nodes.

Usage:

simulator.initial_condition(node_name1=value, ...)
measure(analysis_type, name, *args)[source]

Add a measure in the circuit.

Examples of usage:

simulator.measure('TRAN', 'tdiff', 'TRIG AT=10m', 'TARG v(n1) VAL=75.0 CROSS=1')
simulator.measure('tran', 'tdiff', 'TRIG AT=0m', f"TARG par('v(n1)-v(derate)') VAL=0 CROSS=1")

Note: can be used with the .options AUTOSTOP to stop the simulation at Trigger.

Spice syntax:

.meas tran tdiff TRIG AT=0m TARG v(n1) VAL=75.0 CROSS=1
noise(output_node, ref_node, src, variation, points, start_frequency, stop_frequency, points_per_summary=None)[source]

Perform a Pole-Zero analysis of the circuit.

output_node, ref_node - output node pair. src - signal source, typically an ac voltage input. variation - must be ‘dec’ or ‘lin’ or ‘oct’ for decade, linear, or octave. points, start_frequency, stop_frequency - number of points, start and stop frequencies. points_per_summary - if specified, the noise contributions of each noise generator is produced every points_per_summary frequency points.

See section 15.3.4 of ngspice manual.

Spice syntax:

General form:

.noise v(output <,ref >) src ( dec | lin | oct ) pts fstart fstop <pts_per_summary >

Examples:

.noise v(5) VIN dec 10 1kHz 100 MEG
.noise v(5 ,3) V1 oct 8 1.0 1.0 e6 1
operating_point()[source]

Compute the operating point of the circuit with capacitors open and inductors shorted.

polezero(node1, node2, node3, node4, tf_type, pz_type)[source]

Perform a Pole-Zero analysis of the circuit.

node1, node2 - Input node pair. node3, node4 - Output node pair tf_type - should be cur for current or vol for voltage pz_type - should be pol for pole, zer for zero, or pz for combined pole zero analysis.

See section 15.3.6 of ngspice manual.

Spice syntax:

.tran tstep tstop <tstart <tmax>> <uic>
.pz node1 node2 node3 node4 cur pol
.pz node1 node2 node3 node4 cur zer
.pz node1 node2 node3 node4 cur pz
.pz node1 node2 node3 node4 vol pol
.pz node1 node2 NODE3 node4 vol zer
.pz node1 node2 node3 node4 vol pz

Examples:

.pz 1 0 3 0 cur pol
.pz 2 3 5 0 vol zer
.pz 4 1 4 1 cur pz
save(*args)[source]

Set the list of saved vectors.

If no .save line is given, then the default set of vectors is saved (node voltages and voltage source branch currents). If .save lines are given, only those vectors specified are saved.

Node voltages may be saved by giving the node_name or v(node_name). Currents through an independent voltage source (including inductor) are given by i(source_name) or source_name#branch. Internal device data are accepted as @dev[param].

If you want to save internal data in addition to the default vector set, add the parameter all to the additional vectors to be saved.

property save_currents

Save all currents.

save_internal_parameters(*args)[source]

This method is similar to`save` but assume all.

transfer_function(outvar, insrc)[source]

The python arguments to this function should be two strings, outvar and insrc.

ngspice documentation as follows:

General form:

.tf outvar insrc

Examples:

.tf v(5, 3) VIN
.tf i(VLOAD) VIN

The .tf line defines the small-signal output and input for the dc small-signal analysis. outvar is the small signal output variable and insrc is the small-signal input source. If this line is included, ngspice computes the dc small-signal value of the transfer function (output/input), input resistance, and output resistance. For the first example, ngspice would compute the ratio of V(5, 3) to VIN, the small-signal input resistance at VIN, and the small signal output resistance measured across nodes 5 and 3

transient(step_time, end_time, start_time=0, max_time=None, use_initial_condition=False)[source]

Perform a transient analysis of the circuit.

Examples of usage:

analysis = simulator.transient(step_time=1@u_us, end_time=500@u_us)
analysis = simulator.transient(step_time=source.period/200, end_time=source.period*2)

Spice syntax:

.tran tstep tstop <tstart <tmax>> <uic>
class PySpice.Spice.Simulation.CircuitSimulator(circuit, **kwargs)[source]

Bases: PySpice.Spice.Simulation.CircuitSimulation

This class implements a circuit simulator. Each analysis mode is performed by a method that return the measured probes.

For ac and transient analyses, the user must specify a list of nodes using the probes key argument.

ac(*args, **kwargs)[source]

Perform a small-signal AC analysis of the circuit where all non-linear devices are linearized around their actual DC operating point.

Examples of usage:

analysis = simulator.ac(start_frequency=10@u_kHz, stop_frequency=1@u_GHz, number_of_points=10,  variation='dec')

Note that in order for this analysis to be meaningful, at least one independent source must have been specified with an AC value. Typically it does not make much sense to specify more than one AC source. If you do, the result will be a superposition of all sources, thus difficult to interpret.

Spice examples:

.ac dec nd fstart fstop
.ac oct no fstart fstop
.ac lin np fstart fstop

The parameter variation must be either dec, oct or lin.

dc(*args, **kwargs)[source]

Compute the DC transfer fonction of the circuit with capacitors open and inductors shorted.

Examples of usage:

analysis = simulator.dc(Vinput=slice(-2, 5, .01))
analysis = simulator.dc(Ibase=slice(0, 100e-6, 10e-6))
analysis = simulator.dc(Vcollector=slice(0, 5, .1), Ibase=slice(micro(10), micro(100), micro(10))) # broken ???

Spice syntax:

.dc src_name vstart vstop vincr [ src2 start2 stop2 incr2 ]

src_name is the name of an independent voltage or a current source, a resistor or the circuit temperature.

vstart, vstop, and vincr are the starting, final, and incrementing values respectively.

A second source (src2) may optionally be specified with associated sweep parameters. In this case, the first source is swept over its range for each value of the second source.

Spice examples:

.dc VIN 0 .2 5 5.0 0.25
.dc VDS 0 10 .5 VGS 0 5 1
.dc VCE 0 10 .2 5 IB 0 10U 1U
.dc RLoad 1k 2k 100
.dc TEMP -15 75 5
dc_sensitivity(*args, **kwargs)[source]

Compute the sensitivity of the DC operating point of a node voltage or voltage-source branch current to all non-zero device parameters.

Examples of usage:

analysis = simulator.dc_sensitivity('v(out)')

Spice syntax:

.sens outvar

Examples:

.sens V(1, OUT)
.sens I(VTEST)
distortion(*args, **kwargs)[source]

Perform a distortion analysis of the circuit.

variation, points, start_frequency, stop_frequency - typical ac range parameters. if f2overf1 is specified, perform a spectral analysis, else perform a harmonic analysis.

See section 15.3.3 of ngspice manual.

  • harmonic analysis, The distof1 parameter of the AC input to the circuit must be specified. Second harmonic magnitude and phase are calculated at each circuit node.

  • Spectral analysis,

    The distof2 parameter of the AC input to the circuit must be specified as well as distof1. See the ngspice manual.

Spice syntax:

General form:

.disto dec nd fstart fstop <f2overf1 >
.disto oct no fstart fstop <f2overf1 >
.disto lin np fstart fstop <f2overf1 >

Examples:

.disto dec 10 1kHz 100 MEG
.disto dec 10 1kHz 100 MEG 0.9
classmethod factory(circuit, *args, **kwargs)[source]

Return a PySpice.Spice.Simulation.SubprocessCircuitSimulator or PySpice.Spice.Simulation.NgSpiceSharedCircuitSimulator instance depending of the value of the simulator parameter: subprocess or shared, respectively. If this parameter is not specified then a subprocess simulator is returned.

noise(*args, **kwargs)[source]

Perform a Pole-Zero analysis of the circuit.

output_node, ref_node - output node pair. src - signal source, typically an ac voltage input. variation - must be ‘dec’ or ‘lin’ or ‘oct’ for decade, linear, or octave. points, start_frequency, stop_frequency - number of points, start and stop frequencies. points_per_summary - if specified, the noise contributions of each noise generator is produced every points_per_summary frequency points.

See section 15.3.4 of ngspice manual.

Spice syntax:

General form:

.noise v(output <,ref >) src ( dec | lin | oct ) pts fstart fstop <pts_per_summary >

Examples:

.noise v(5) VIN dec 10 1kHz 100 MEG
.noise v(5 ,3) V1 oct 8 1.0 1.0 e6 1
operating_point(*args, **kwargs)[source]

Compute the operating point of the circuit with capacitors open and inductors shorted.

polezero(*args, **kwargs)[source]

Perform a Pole-Zero analysis of the circuit.

node1, node2 - Input node pair. node3, node4 - Output node pair tf_type - should be cur for current or vol for voltage pz_type - should be pol for pole, zer for zero, or pz for combined pole zero analysis.

See section 15.3.6 of ngspice manual.

Spice syntax:

.tran tstep tstop <tstart <tmax>> <uic>
.pz node1 node2 node3 node4 cur pol
.pz node1 node2 node3 node4 cur zer
.pz node1 node2 node3 node4 cur pz
.pz node1 node2 node3 node4 vol pol
.pz node1 node2 NODE3 node4 vol zer
.pz node1 node2 node3 node4 vol pz

Examples:

.pz 1 0 3 0 cur pol
.pz 2 3 5 0 vol zer
.pz 4 1 4 1 cur pz
tf(*args, **kwargs)

The python arguments to this function should be two strings, outvar and insrc.

ngspice documentation as follows:

General form:

.tf outvar insrc

Examples:

.tf v(5, 3) VIN
.tf i(VLOAD) VIN

The .tf line defines the small-signal output and input for the dc small-signal analysis. outvar is the small signal output variable and insrc is the small-signal input source. If this line is included, ngspice computes the dc small-signal value of the transfer function (output/input), input resistance, and output resistance. For the first example, ngspice would compute the ratio of V(5, 3) to VIN, the small-signal input resistance at VIN, and the small signal output resistance measured across nodes 5 and 3

transfer_function(*args, **kwargs)[source]

The python arguments to this function should be two strings, outvar and insrc.

ngspice documentation as follows:

General form:

.tf outvar insrc

Examples:

.tf v(5, 3) VIN
.tf i(VLOAD) VIN

The .tf line defines the small-signal output and input for the dc small-signal analysis. outvar is the small signal output variable and insrc is the small-signal input source. If this line is included, ngspice computes the dc small-signal value of the transfer function (output/input), input resistance, and output resistance. For the first example, ngspice would compute the ratio of V(5, 3) to VIN, the small-signal input resistance at VIN, and the small signal output resistance measured across nodes 5 and 3

transient(*args, **kwargs)[source]

Perform a transient analysis of the circuit.

Examples of usage:

analysis = simulator.transient(step_time=1@u_us, end_time=500@u_us)
analysis = simulator.transient(step_time=source.period/200, end_time=source.period*2)

Spice syntax:

.tran tstep tstop <tstart <tmax>> <uic>
class PySpice.Spice.Simulation.DCAnalysisParameters(**kwargs)[source]

Bases: PySpice.Spice.Simulation.AnalysisParameters

This class defines analysis parameters for DC analysis.

class PySpice.Spice.Simulation.DcSensitivityAnalysisParameters(output_variable)[source]

Bases: PySpice.Spice.Simulation.AnalysisParameters

This class defines analysis parameters for DC sensitivity analysis.

class PySpice.Spice.Simulation.DistortionAnalysisParameters(variation, points, start_frequency, stop_frequency, f2overf1)[source]

Bases: PySpice.Spice.Simulation.AnalysisParameters

This class defines analysis parameters for distortion analysis.

class PySpice.Spice.Simulation.MeasureParameters(analysis_type, name, *args)[source]

Bases: PySpice.Spice.Simulation.AnalysisParameters

This class defines measurements on analysis.

class PySpice.Spice.Simulation.NoiseAnalysisParameters(output, src, variation, points, start_frequency, stop_frequency, points_per_summary)[source]

Bases: PySpice.Spice.Simulation.AnalysisParameters

This class defines analysis parameters for noise analysis.

class PySpice.Spice.Simulation.OperatingPointAnalysisParameters[source]

Bases: PySpice.Spice.Simulation.AnalysisParameters

This class defines analysis parameters for operating point analysis.

class PySpice.Spice.Simulation.PoleZeroAnalysisParameters(node1, node2, node3, node4, tf_type, pz_type)[source]

Bases: PySpice.Spice.Simulation.AnalysisParameters

This class defines analysis parameters for pole-zero analysis.

class PySpice.Spice.Simulation.TransferFunctionAnalysisParameters(outvar, insrc)[source]

Bases: PySpice.Spice.Simulation.AnalysisParameters

This class defines analysis parameters for transfer function (.tf) analysis.

class PySpice.Spice.Simulation.TransientAnalysisParameters(step_time, end_time, start_time=0, max_time=None, use_initial_condition=False)[source]

Bases: PySpice.Spice.Simulation.AnalysisParameters

This class defines analysis parameters for transient analysis.